The Central Nebraska Public Power and Irrigation District's board of directors passed a motion to permit the use of alcohol on district lakes associated with the Supply Canal.

According to Nebraska law, the consumption of alcohol on any property owned by the state or a governmental subdivision is prohibited unless authorized by the governing bodies having jurisdiction over such property.

The board had issued a March resolution to look into the issue further in response to confusion among visitors to Johnson Lake about rules concerning alcohol consumption on the lake. Alcohol consumption is allowed—subject to a number of regulations—in the campgrounds at Johnson Lake operated by the Nebraska Game and Parks Commission (NGPC), but was prohibited on the water.

In a 5-0 vote during Monday's monthly meeting (two directors were absent), the board authorized the consumption of alcohol on all of Central's Supply Canal lakes, including Johnson, Jeffrey and Ridgley lakes, as well as Elwood Reservoir. The action does not apply to Lake McCown where alcohol is prohibited.

Also at Monday's meeting:

- Irrigation Division Manager Dave Ford presented data from the spring analysis of groundwater levels in Central's service area. Ford said analysis of data from 115 observation wells within the irrigated area showed declines of up to three feet in almost half of the wells since last spring.

 - For the past ten years, about 64 percent of the observation wells have shown declines of an average of 4.5 feet. Central also compared observation well data from the period 1981 to 1985 to measure groundwater level changes. Since that period, almost 60 percent of wells are showing declines of one to more than 10 feet, with half of those wells showing an average decline of 7.4 feet.

 - Ford added that the amount of water that went to recharging the area's groundwater supply.

 - Civil engineer updated the board on progress of the J-2 Regulating Reservoir project. The reservoirs are proposed as flood control projects to improve hydropower generation efficiency; allow Central to remove the need to cycle the J-2 Hydropark in the event of low generation efficiency during the irrigation season; provide instream flow benefits to wildlife habitat for the Platte River Recovery Implementation Program; provide “new depletions” offsets to Natural Resources Districts and the State of Nebraska; and allow Central to remove the flow attenuation plans that affect water levels at Johnson Lake during the spring and summer.

 - Currently Central and its consultants are evaluating data from geotechnical and cultural resources investigations that were recently completed on about 1,200 acres in the project area. Steinke added that draft study plans are in development for wetlands, water quality, and cultural resources. A meeting is scheduled soon with the Nebraska Department of Natural Resources to discuss design of the improvements that will contain the water.

 - Steinke also reported that Lake McCown is at elevation 3250.1 feet, that will contain the water.

Contact: Jeff Buettner
Public Relations Coordinator
Office: (308) 995-8601
Cell: (308) 991-1138
Email: jbuettner@cnppid.com

FOR IMMEDIATE RELEASE
May 4, 2015

Irrigation Division Manager Dave Ford presented data from the spring analysis of groundwater levels in Central’s service area. Ford said analysis of data from 115 observation wells within the irrigated area showed declines of up to three feet in almost half of the wells since last spring.

Ford said he found the results somewhat surprising because of relatively high precipitation amounts that occurred during the 2014-growing season.

“I thought that we’d see better results from the observation wells because the area received pretty decent rainfall last year,” he said. “I expected that would lead to reduced irrigation pumping, but the observation well data still shows declines.”

Ford said he suspects that more pumping of groundwater wells and reduced diversions of water into the area in Central’s canals are contributing factors. Add to that, he said, greater on-farm irrigation efficiencies and the result is that less water is available to recharge the groundwater supply.

A little over 40% of the wells showed increases, although most of those wells were located in the Elwood area and the upper end of the Phelps Canal where Central cooperated with the Tri State Natural Resources District, the Nebraska Department of Natural Resources and the Platte River Recovery Implementation Program to divert excess water from the Platte River for recharge purposes.

Over the past ten years, about 64% of the observation wells have declined by an average of 4.5 feet. Central also compared observation well data from the period 1981 to 1985 to measure groundwater level changes. Since that period, almost 60% of wells are showing declines of one to more than 10 feet, with half of those wells showing an average decline of 7.4 feet.

Ford added that the amount of water that went to recharging the area’s groundwater level table was about 144,000 acre-feet per year prior to 2001. Over the last 15 years, he said, that amount has fallen to about 90,000 acre-feet per year.

Civil engineer updated the board on progress of the J-2 Regulating Reservoir project. The reservoirs are proposed as flood control projects to improve hydropower generation efficiency; allow Central to remove the need to cycle the J-2 Hydropark in the event of low generation efficiency during the irrigation season; provide instream flow benefits to wildlife habitat for the Platte River Recovery Implementation Program; provide “new depletions” offsets to Natural Resources Districts and the State of Nebraska; and allow Central to remove the flow attenuation plans that affect water levels at Johnson Lake during the spring and summer.

Currently Central and its consultants are evaluating data from geotechnical and cultural resources investigations that were recently completed on about 1,200 acres in the project area. Steinke added that draft study plans are in development for wetlands, water quality, and cultural resources. A meeting is scheduled soon with the Nebraska Department of Natural Resources to discuss design of the improvements that will contain the water.

Steinke also reported that Lake McCown is at elevation 3250.1 feet, with storage of 1.32 million acre-feet (76 percent of capacity). Inflows have been ranging from 800 cubic feet per second (cfs) recently to about 1,100 cfs currently, which is about 80 percent of the median, or normal, historical inflow.

Snowpack accumulation in the upper North Platte River Basin is 62 percent of normal, with storage of 1.32 million acre-feet (76 percent of capacity). Inflows have been ranging from 800 cubic feet per second (cfs) recently, which is about 80 percent of the median, or normal, historical inflow.

Steinke also reported that Lake McCown is at elevation 3250.1 feet, with storage of 1.32 million acre-feet (76 percent of capacity). Inflows have been ranging from 800 cubic feet per second (cfs) recently, which is about 80 percent of the median, or normal, historical inflow.

Snowpack accumulation in the upper North Platte River Basin is 62 percent of normal, with storage of 1.32 million acre-feet (76 percent of capacity). Inflows have been ranging from 800 cubic feet per second (cfs) recently, which is about 80 percent of the median, or normal, historical inflow.

Steinke also reported that Lake McCown is at elevation 3250.1 feet, with storage of 1.32 million acre-feet (76 percent of capacity). Inflows have been ranging from 800 cubic feet per second (cfs) recently, which is about 80 percent of the median, or normal, historical inflow.

Snowpack accumulation in the upper North Platte River Basin is 62 percent of normal, with storage of 1.32 million acre-feet (76 percent of capacity). Inflows have been ranging from 800 cubic feet per second (cfs) recently, which is about 80 percent of the median, or normal, historical inflow.

Steinke also reported that Lake McCown is at elevation 3250.1 feet, with storage of 1.32 million acre-feet (76 percent of capacity). Inflows have been ranging from 800 cubic feet per second (cfs) recently, which is about 80 percent of the median, or normal, historical inflow.