Vigilance Necessary to Protect Water Sustainability Fund

Vigilance Necessary to Protect Water Sustainability Fund

You can’t say it wasn’t expected.

A bill in the Nebraska Legislature this session sought to take money from the Water Sustainability Fund (WSF) for a purpose that was completely unrelated to the original intent and objectives of the WSF.

Thankfully, the bill did not pass, largely due to the efforts of a number of senators who opposed the measure.  However, it reminds those who are responsible for managing the state’s water resources to remain vigilant about such future attempts.

First, a little background.

Former State Senator Tom Carlson of Holdrege (Dist. 38) introduced a bill during the 2013 session that created the Water Funding Task Force.  The task force consisted of 34 members concerned with ensuring sustainable use of Nebraska’s water resources.  Original task force members represented virtually all of Nebraska’s water resources interests, from agriculture, utilities and municipalities to wildlife and recreation.

The task force’s objectives were ambitious in scope, but can be condensed into a few primary goals: make recommendations for developing water-funding legislation that would contribute to achieving sustainable use of water in Nebraska; identify potential sources of funding for programs, projects and activities; and develop a set of criteria by which potential projects would be evaluated and ranked according to how well they met the criteria.

The task force met more than 30 times between July and December 2013 at various sites across the state.  The product of these meetings was the establishment of a Water Sustainability Fund intended to assist projects (with a 40-percent match from the sponsor) that increased the available water supply, reduced water use, increased stream flows, improved water quality, provided flood control enhancements, ensured adequate water for agricultural, municipal and industrial uses, addressed wildlife needs, and improved recreational benefits.  The efforts culminated in the passage of LB1098 during the 2014 legislative session, which created the WSF and assigned its oversight to an expanded Natural Resources Commission.

The scoring criteria for the WSF developed by the task force was later refined by the Natural Resources Commission with focus on significant and expensive water issues that match the fund’s objectives.

The recent attempt in the Legislature was to reallocate funds from the WSF for use in establishing water supplies for community gardens.  Certainly a commendable purpose, but it failed to fit with any of the objectives identified for water sustainability funding.  Perhaps more importantly, passage of such a bill would have set a dangerous precedent, one that would have encouraged additional efforts to siphon funding from the WSF.

The WSF has seen in the past two years a reduction in its funding, as money is reallocated to help address the state’s budget shortfall.  That’s understandable; almost all state cash funds have been reduced.  Additional hands shaking the piggy bank in the future would diminish the state’s ability to achieve the WSF’s objectives.

Memories surface of how other state program funds have been tapped for purposes other than originally intended, based on the argument that “times have changed and so can funding appropriations.”  That may be true in some cases, but not for the WSF; its task remains the same.  Now entering its fourth grant cycle, the need to sustain and protect Nebraska’s water resources is as great as ever and it is the state as a whole that will benefit.

The next drought is always lurking around the corner.  When it inevitably arrives, the water sustainability improvements made possible by the WSF will prove their worth.  Nebraskans who value the original intent of the Water Sustainability Fund to fund programs and projects that help ensure the availability of water supplies for future generations should remain on guard and be thankful to those who worked so hard to establish a dedicated source of funding to enhance and protect Nebraska’s water resources.

2017 Water & Natural Resources Tour: Education and Fun

2017 Water & Natural Resources Tour:  Education and Fun

The focus of the recent Water & Natural Resources Tour was on educating and informing participants about the many uses and benefits of water within the Platte River Basin between Ogallala and Holdrege, but there was plenty of fun, food and, yes, even exercise during the three-day tour.

What follows is a short(?) recap of the tour, along with some observations from the tour.

The tour participants – numbering more than 50 – assembled at Central’s administrative headquarters on the morning of June 27 and headed out via motor coach for the first stop at a site just south of the Platte River near between Elm Creek and Overton.  The site is part of what is called the Cottonwood Ranch complex, which is owned by the Nebraska Public Power District and managed for wildlife habitat purposes by the Platte River Recovery Implementation Program (Program).

Jerry Kenny (with microphone) of the Platte River Recovery Implementation Program describes plans for a groundwater recharge/river flow enhancement project during the 2017 tour.

Part of the 3,000-acre ranch is comprised of grasslands and wet meadows and it is here that the Program is investigating prospects for a groundwater recharge project that will benefit base flows in the Platte River.  The idea is to construct earthen berms around about 300 acres in the area, fill them with anywhere from six to 14 inches of water and allow the water to seep into the ground, which will eventually return to the river.  The shallow water would also presumably attract migrating whooping cranes as a place to forage and roost.

From there the tour headed to the Tom Schwarz farm to check out one of the few organic farming operations in the area.  It is here that Tom, his family and a few hired hands raise organic crops and vegetables in adjacent fields and small greenhouses.  The greenhouses recently sustained heavy damage from a spring storm, but inside one of the relatively undamaged structures, Tom showed off rows of peppers, tomatoes and other vegetables that are being raised without pesticides, herbicides or non-organic fertilizer.  Tom also has plans to begin a small organically raised cattle herd.

On the bus on the way to the next stop, John Thorburn, manager of the Tri-Basin Natural Resources District, explained the proposed Platte to Republican Diversion Project.  The PRD Project, as it has become known, would deliver water from the E-65 Canal to the mouth of Turkey Creek through a pipeline bored beneath Highway 23 and the railroad tracks during times when there are excess flows in the Platte River.  Any water appropriations granted by the Nebraska Department of Natural Resources would be junior to all current or future appropriations in the Platte River watershed.  The project is intended to help reach objectives related to the NRDs’ Integrated Water Resources Management Plans and to assist in compliance with the Republican River Compact between Nebraska and Kansas.

After about 45 minutes at the Schwarz farm, the tour headed for Elwood Reservoir and the Carl T. Curtis Pump Station, which were added to Central’s system in 1977 to improve delivery surface throughout the E-65 Canal’s service area.  The reservoir is also used for groundwater recharge purposes during the non-irrigation season and has become known as an excellent walleye fishery.  Water is pumped into the reservoir at the pump station and then allowed to run back out by gravity when needed for irrigation deliveries.

The bus then traveled across the Johnson Lake dam; on the way the riders observed the synthetic membrane lining (a water conservation/canal efficiency measure) in the upper end of the E-65 Canal, the headgate of the canal and the inlet structure on the lake’s west side.

After a busy morning, lunch was served at the Monsanto Water Utilization Center near Gothenburg while Duane Woodward from the Central Platte Natural Resources District talked to the group about groundwater recharge efforts within the district.

After lunch the group headed out to the fields on pickup truck-pulled trolleys to examine studies of yields, insect and weed control, plant health and fertility, microbials, canopy height, drought stress and other topics.  The tour participants also observed how the center’s “rain-out shelter” is used to ensure precipitation doesn’t interfere with studies involving drought resistance of crops.

(Author’s note:  Keep in mind, all of these tour visits occurred on the same day, and we’re not finished yet!)

After a quick pause for refreshments, the group headed into Gothenburg for a tour of the Frito Lay Corn Handling Facility, where they learned that any of the snack chips consumed west of the Mississippi River originated as corn passing through this facility.  Plant managers showed and explained to the group the control room, the load-out bays and the storage facilities at the plant.

The bus then headed down the street to Central’s Gothenburg Control Center from which operational monitoring and control of most of the District’s canal structures, pump stations and hydroplants is performed.  Gothenburg Division Manager Devin Brundage also explained how the water passing through Central’s system originates as snow and rain in the Rocky Mountains of Colorado and Wyoming before passing through a series of U.S. Bureau of Reclamation reservoirs and several upstream irrigation projects before entering Lake McConaughy.

Central’s Gothenburg Division Manager Devin Brundage explains how the District’s control center operates the hydroelectric/irrigation project.

After checking into their North Platte motel, the group was treated to dinner and wine at the Feather River Winery and Vineyard, after which the vineyard’s owner explained how the facility came to be and the process of growing hybrid grapes for wine production in Nebraska’s often harsh climate extremes.

Day 2

After a good night’s rest (well-deserved given the pace of the first day!), the tour participants boarded the bus for a stop along NPPD’s Sutherland Canal at which a still-under-construction pipeline will eventually deliver water from the Nebraska Cooperative Republican Platte Enhancement Project (NCORPE) well field.  A 19,500-acre farm was purchased in 2012 by a consortium of four NRDs (Upper Republican, Middle Republican, Lower Republican and Twin Platte), the cropland was converted to grassland and the irrigation wells – instead of feeding pivots – were hooked to a pipeline to deliver water to the Republican River Basin to help Nebraska’s compliance with the Kansas-Nebraska Republican River Compact.  The pipeline currently under construction will move water north to the canal and then back to the South Platte River as part of the Twin Platte NRD’s efforts to offset depletions to the Platte River caused by groundwater pumping.  TPNRD Manager Kent Miller and NCORPE manager Kyle Shepherd (who also participated in the entire tour) were on hand to explain the project’s details.

The next stop was nearby:  the Nebraska Game and Parks Commission’s North Platte Fish Hatchery.  Hatchery personnel, including manager Dirk Higgins, showed everyone around, including how the facility produces a variety of cool-water and warm-water fish species including walleye, white bass, blue catfish and channel catfish.  When needed, the hatchery also produces yellow perch, black and white crappie, blue catfish, wiper, striped bass, bluegill, muskellunge, tiger muskie, smallmouth bass, grass carp, northern pike and largemouth bass.  North Platte hatchery staff also makes annual collections of walleye and white bass eggs and milt from regional water bodies.  A relatively new activity at the hatchery is an effort to raise freshwater mussels, which are becoming less abundant in Nebraska’s lakes, rivers and streams.

The manager of the NGPC fish hatchery at North Platte describes the process of stocking many species of fish into Nebraska’s lakes and streams.

The bus didn’t have to travel far to reach the next stop, the UNL West Central Research and Extension Center, just a mile down the road from the hatchery.  At the center also known as the “State Farm,” Doug Hallum, Chuck Burr and Daran Rudnick explained current research activities on best management practices and measures to help producers get the most benefit from their water supplies.  Entomologist Julie Peterson also explained how the center is investigating the use of biological controls (read: bugs and/or viruses that target insect pests on the farm) as possible tools to supplement or replace chemical pesticides.

Lunch was served at the “Farm” and the group departed for its next stop at NPPD’s Gerald Gentleman Station (GGS) near Sutherland.  GGS is Nebraska’s largest power plant in terms of generating capacity.  Station Manager Gerry Phelps and a team of tour guides from the station explained the plant’s operation from top to bottom and how water from Lake McConaughy is used to cool the condensers (returning the steam that passes through the turbines to a liquid state).

The tour also included a trip to the plant’s roof, where participants could see the coal yard and immense coal-handling equipment, the water works (including Sutherland Reservoir) and enjoy the view up and down the Platte River Valley.

After the 2-1/2 hour tour concluded, the bus headed for its Ogallala motel to prepare for dinner at the Haythorn Ranch north of Kingsley Dam.  The participants were treated to a wonderful meal by Jody Haythorn and her staff at the Figure 4 Traditions banquet facility and also witnessed a spectacular sunset over the Sandhills.  As the group lingered on the veranda in the fading light, turkeys strutted across a nearby pasture where a few horses seemed to completely ignore them.  Begrudgingly, the group had to be prodded to board the bus and leave the idyllic setting as storm clouds – which would later bring torrential rain – began to roll in.

A gorgeous sunset — and an approaching thunderstorm — at the Haythorn Ranch north of Lake McConaughy where the tour group enjoyed a terrific meal and a wonderful atmosphere.

Day 3

The final day of the tour dawned clear and warm, with little evidence left from the previous night’s storm.  The tour participants headed for the NGPC’s Lake McConaughy Visitors Center to browse through the facility’s Water Interpretive Center and listen to NGPC’s Regional Supervisor Colby Johnson explain the agency’s long-term Master Plan for recreational improvements at Lake McConaughy and Lake Ogallala.  After a little more than an hour, the group boarded the bus for a tour of “Big Mac’s” outlet structures (the Outlet Tower and the “Morning Glory” spillway) and the Kingsley Hydroplant below the dam.

Devin Brundage appears for the second time on the tour, this time as tour guide for the Kingsley Hydro. Here he explains the operation of the hydroplant’s bypass valve.

Most of the tourists had never had the opportunity to peer down into the great bowl of the spillway and a few backed away from the railing at the sight of the gaping hole through which huge volumes of water could be released if necessary to control the lake’s elevation during high-water events.  At the outlet tower, where the gates for normal releases of water lie at the bottom of the lake, no hands were raised when Central’s electro-mechanical technician Jason Meints explained the routine inspection process for the inside of the tower and asked for volunteers.  All it involves is a slow ride down the 160-feet-deep shaft on a flimsy platform attached to a steel cable in pitch darkness.  (To my surprise, I’ve never had anyone indicate an interest in going down the tower during similar tours, save for a few 15-year-olds who haven’t yet developed an aversion to dark and tight spaces.)

The group also enjoyed running … well, walking … several flights of stairs necessary to reach the generator floor and turbine-pit floor deep within the Kingsley Hydroplant.  Gothenburg Division Manager Devin Brundage, pulling double duty as a tour guide, explained the workings of the largest hydroplant in Nebraska and answered questions from tourists experiencing their first visit inside such a facility.

When the group members had regained their breath after climbing the stairs back into the sunlight, the tour continued down the road to Ole’s Big Game Bar & Steakhouse for a steak lunch, one more opportunity to fuel up for the final event of the tour:  a kayak trip down Central’s Supply Canal from just below Midway Lake near Cozad to the Gallagher Canyon Lake boat ramp, a stretch of 5.5 miles.

For most tour participants, it was their first opportunity to paddle a kayak, but everyone seemed to get the hang of the easily maneuverable crafts quite quickly.  Those who chose not to paddle boarded a john boat and a pontoon provided to follow along.  Since safety was a primary consideration, Jarrid Rickertsen – a Central employee at the Gothenburg office and a licensed emergency medical technician – piloted one of the boats and was prepared to use his EMT skills if necessary.  Thankfully, there were no emergencies and the kayakers arrived at their destination in about two hours.

Along the way, the group enjoyed the scenery along the canal.  High banks, plenty of birds, the occasional fish jumping out of the water or swimming just beneath, and a group of teenagers using one of the high banks as a platform from which they could jump/dive/flip into the canal 20 feet below.

A tired, but triumphant group of kayakers climb the boat ramp at Gallagher Canyon Lake upon reaching the end of the 5.5-mile trip down Central’s Supply Canal.

Upon ending the kayak trip and re-boarding the bus, the tour concluded back in Holdrege with an impromptu pizza party in Central’s parking lot.  Three or four dozen pizzas disappeared in short order as the participants gradually departed for home, many of whom expressed their enjoyment of the tour and asked about the destination for next summer’s tour.

The organizing committee, composed of Steve Ress and Tricia Leidle from the Nebraska Water Center; Ben Beckman, research and extension communication specialist from UNL; and Public Relations Assistant Holly Rahmann and myself from Central, will convene soon for a debriefing session on this year’s tour and review comments and suggestions from surveys filled out by participants.  Then we’ll turn the page and begin planning for next year’s tour.  The destination is unknown at this time, but we’ll try to choose a tour that will be interesting and enlightening, and most importantly, fun for its participants, continuing a tradition 40 years in the making.

 

Planning Under Way for Water & Natural Resources Tour

Planning Under Way for Water & Natural Resources Tour

The date is still months away, but not too early to begin thinking about the annual Water and Natural Resources Tour organized by the Nebraska Water Center and The Central Nebraska Public Power and Irrigation District.

This year’s tour will take place on June 27-29. The destination will be Nebraska’s west-central Platte River Basin between Elm Creek and Lake McConaughy.

“This is a critical stretch of the Platte River that has many-faceted and far-reaching impacts on all Nebraskans,” said Steve Ress communicator for the Nebraska Water Center, which is part of the Robert B. Daugherty Water for Food Global Institute. “It is tremendously important for agriculture, Nebraska’s economy, recreation, hydropower production, fish and wildlife habitat and many other interests.”

The Water and Natural Resources Tour began more than 40 years ago as an idea of then UNL Chancellor D.B. “Woody” Varner. What was originally an irrigation tour has evolved over the years into a broad investigation of many water and environmental topics relevant to Nebraska.

Tentative stops and topics on the tour include an organic farming operation; facilities related to Central’s hydro-irrigation project, including Kingsley Dam and Lake McConaughy; the Nebraska Game and Parks Commission’s Water Interpretive Center at Lake McConaughy; projects underway by Platte Basin Natural Resources Districts; the Frito-Lay corn Handling Facility at Gothenburg and Monsanto’s Water Utilization Learning Center at Gothenburg; UNL’s West Central Research and Extension Center near North Platte for discussion of new cropping and irrigation technology research, a stop at a Platte River Recovery Implementation Program site; the Nebraska Public Power District’s Gerald Gentleman Station near Sutherland, and more. Planning is underway to end the tour with a kayak trip on a stretch of Central’s Supply Canal.

“Anyone who is interested in water resources, be they producers, researchers, or work in the water resources field, is welcome to attend,” said Central’s Public Relations Coordinator Jeff Buettner. “Our agenda will be packed with interesting topics and our goal is to present a broad overview of why this stretch of the Platte River is so important to Nebraska for many different reasons.”

Registration information for the tour will be announced soon. The latest tour information will be online at watercenter.unl.edu. Participation will be limited to the first 55 registrations.

Elevation & Flow Data: Technology is great … when it works

Elevation & Flow Data:  Technology is great … when it works

Technology is great … when it works the way it’s supposed to.

Case in point: visitors to Central’s “Reservoir/River Data” web page may have noticed “anomalies” in some of the graphs. In particular, the graph depicting recent inflows to Lake McConaughy shows a sudden spike; flows coming into the reservoir – according to the graph – jumped from around 1,200 cubic feet per second (cfs) to more than 7,500 cfs.

No, there wasn’t a cloudburst above Lake McConaughy and, no, there wasn’t a sudden release of large volumes of water from upstream reservoirs. The spike was caused by cold temperatures and ice in the North Platte River that interfered with gauging station equipment and the ability to accurately measure flows in the river.

Similarly, the elevation graph for Lake McConaughy shows a sudden and dramatic drop in the reservoir’s water level – almost 30 feet – that, we can assure you, did not actually happen. No, the dam didn’t break and there’s not a huge volume of water surging down the river.

Again, there was a problem with the data collection equipment that resulted in the generation of inaccurate graphs.

Now, you might think it’s a fairly simple matter to correct the data displayed on the graphs, but it’s more complicated than that because of the nature of how the graph is populated with data. In the past, all data was manually keyed into a spreadsheet and table. The data was used to create each graph which were then manually uploaded to the server for display on the web page. It was easy to recognize when “bad” data was reported, to confirm that the data was indeed “bad,” and to input correct data.

When the “Reservoir/River Data” page was automated earlier this year, the task the programmer faced was how to pull together data from multiple sources (gauges maintained by the U.S. Government Survey, the Nebraska Department of Natural Resources, and Central’s own supervisory control and data acquisition system (SCADA)) into a cohesive form and then to code the information to automatically generate the graphs that appear on the web page.

However, the “bad” data is already recorded and stored in the data base that the automated system queries to populate the table and graphs on the web page. In some cases, since the data is not compiled by Central, it becomes difficult to change the source data (which is archived in the source data base) and requires manual override by Central personnel on a daily basis, a somewhat time-consuming task that was supposed to be unnecessary after automating the page.

So, the upshot is that we’re working on a way to resolve the issue that typically arises when winter weather conditions interfere with gauge function. Until a solution can be found, don’t get too excited by sudden sharp spikes – up or down – in the data reported in the table or that appears on the graphs. If something unusual does occur, rest assured that we’ll let you know.

###

Kingsley Hydro Inspection: Images from the Inside

Kingsley Hydro Inspection: Images from the Inside

The accompanying images reveal parts of the Kingsley Hydroplant that are seldom seen by anyone other than Central employees who perform regular inspections, maintenance and repairs at Nebraska’s largest hydropower plant.

Central’s engineers and maintenance crews take the plant off-line annually for regular inspection and maintenance of the facility’s mechanical and electrical components, but every five years the 19-feet-diameter penstock leading from the Control Tower in Lake McConaughy and the scroll case which routes the water through the turbine are de-watered for complete inspections.

Once the gates on the Outlet Tower and the huge guard valve within the hydroplant are closed, preventing water from Lake McConaughy from entering the plant, pumps removed water from the penstock so a two-man crew can paddle a small rubber boat up the penstock to the base of the Outlet Tower to perform the inspection. (In addition, Central personnel take a larger aluminum boat – with a motor — up the 28-feet-diameter penstock from the “Morning Glory” spillway to inspect the inside of that pipe.)

Being inside the huge scroll case, which is a spiral-shaped intake tube that routes water entering from the penstock through the wicket gates just above the turbine blades, is not a place for someone with claustrophobia. First, it’s pitch dark until portable lights are turned on to enable the inspection process. Second, one arrives (either immediately or eventually) at the realization that you are well below the bottom of Lake McConaughy and only several inches of steel separate you from almost 2 million acre-feet of water on the other side.

But for the men doing the inspections, it’s all in a day’s work.

 

The wicket gates that control the flow of water falling over the turbine blades. The gates move along a vertical axis.

The wicket gates that control the flow of water falling over the turbine blades. The gates move along a vertical axis.

View from below the turbine hub, with blades and closed wicket gates visible.

View from below the turbine hub, with blades and closed wicket gates visible.

Close-up view of one of the stainless steel turbine blades.

Close-up view of one of the stainless steel turbine blades.

The turbine hub with scaffolding erected to facilitate inspection and maintenance work.

The turbine hub with scaffolding erected to facilitate inspection and maintenance work.

The guard valve between the penstock and scroll case.  The valve is 19 feet in diameter.

The guard valve between the penstock and scroll case. Although it doesn’t appear very large in the photo, the valve is 19 feet in diameter.

 

 

2015-16 Water Year Ranks 7th for Inflows

2015-16 Water Year Ranks 7th for Inflows

So far it’s been a pretty good year … if you’re a Husker football fan or a fan of Lake McConaughy.

The Huskers recently re-entered the Top 10 rankings (according to the AP and Coaches polls) for the first time in several years and inflows into Lake McConaughy also cracked the top 10, finishing the water year (Oct. 1, 2015 to Sept. 30, 2016) at number seven.

The (unofficial) total of 1,665,983 acre-feet (a-f) was 344,000 more than last year (2014-15) and 961,000 a-f behind the all-time inflow record of more than 2.6 million a-f set during the 2010-11 water year.

Still, this year’s mark was well above the historic median of 1,029,110 a-f and the historic average inflow of 916,900 a-f. That’s good news for the water supply in Nebraska.

If you just look at the last 30 years as a measuring stick, the recently ended water year was the second highest during that period.

Interestingly, since 2009-10 Lake McConaughy has experienced four of the 12 highest inflow years on record. Conversely, since 2000-01, we’ve seen the six LOWEST inflow totals ever, as well as the 8th and 9th lowest inflow years.

So if you’re looking for a trend, it might be along the lines of “feast or famine” over the past 16 years.

What to expect during the new water year? It appears that we’ll have to wait and see.

The good news might be that the La Niña weather pattern that was expected to follow the recently ended El Nino cycle has seemingly failed to materialize. According to the National Aeronautics and Space Administration, La Nina cycles are typically characterized by below normal precipitation in the Central Rockies and the Great Plains. If it’s not a factor this year, winter and spring weather – and particularly snowfall and spring rainfall – are a coin flip, with equal chances of above or normal precipitation during the first part of 2017.

Yep, we’ll just have to wait and see.

 

(Note:  The author is NOT a meteorologist, but does like to watch the weather forecasts on TV.)

From the Archives: “This Day in History”

From the Archives:  “This Day in History”

Kingsley Dam was completed in 1941, so as we approach in 2016 the 75th anniversary of the dam and the beginning of project operations, we will be posting a list of historical highlights from the District’s past, sort of a “This Day in History” compilation. The entries will added according to when they occurred over the calendar year.

APRIL

April 11, 1941 — George Johnson, Central’s chief engineer and general manager, predicted that the Platte River would have a steady year-round flow within three years.  The construction of Kingsley Dam and Lake McConaughy, which would store flows in the North Platte River for irrigation deliveries and hydroelectric generation, would eliminate the “no-flow” periods — particularly in the central Platte stretch — that were common before the dam was built.  (Subsequent history would prove Johnson largely correct.)  The canal system — including the Supply Canal and the irrigation canals — would eventually contribute underground return flows helped stabilize base flows in the river.

NOVEMBER

Nov. 1, 1933 – The Central Nebraska Public Power and Irrigation District was officially organized after State Engineer Roy Cochran gave conditional approval to a reorganization of the District. The District’s creation had initially been approved by the Nebraska Department of Roads and Irrigation on July 24, 1933 as the Central Nebraska Public Power and Irrigation District, although several hurdles remained to be cleared. Having made progress toward gaining approval and funding for the hydro-irrigation project, the new organization – officially called THE Central Nebraska Public Power and Irrigation District – was created by the state engineer’s approval on Nov. 1.

Nov. 7, 1940 – Central’s board of directors signed a farm management contract with the University of Nebraska, placing what was called the Tri-County Farm Management Farm (which was used to demonstrate best management practices to farmers still learning about irrigated farming) under the supervision of the University’s Board of Regents.

November, 1940 — The two dredges pumping fill for Kingsley Dam — one upstream and one below the dam — completed the project that built (at the time, behind Ft. Peck Dam on the Missouri River in Montana) the second largest hydraulic-fill dam in the world.  Approximately 25.5 million cubic yards of sand and gravel were pumped during the process.  Following completion of dredging activities, workers plugged the huge tube that carries water from the North Platte River beneath the dam (now connected to the Morning Glory Spillway) and water began passing through the Control Tower.  The process of filling the reservoir was expected to begin in the spring of 1941.

November, 1965 – Central crews, under the supervision of Kingsley Dam Division Manager Bernard Donelan, finished what was originally planned to be a three-year project of placing 800-lbs. tetrahedrons on the face of Kingsley Dam. The 16,360 “tets” were placed in a matter of months because the growing season proved to be wet, resulting in low demand for water from Lake McConaughy and freeing up members of the crew to work on the dam instead of their normal irrigation-related duties. A private contractor poured the concrete jackstones at a site near the dam and subsequently manufactured several thousand more to stockpile near the dam. The jackstones were designed to protect the dam’s face by breaking wave action against the dam.

November 2004 – Maps prepared from data accumulated by the UNL Conservation and Survey Division revealed, “Significant and persistent declines in some areas of the state (that) have only become more obvious in the last few years due mainly to current drought conditions and resulting increases in groundwater pumping.” The UNL Water Center noted a spike in well drilling that occurred after passage in the spring of LB962 (a law intended to prevent conflicts between groundwater and surface water users) that spurred a rush to drill additional wells before a moratorium on new wells in some areas went into effect. According to UNL hydrogeologist Jim Goeke, “The increase in pumping and diminished recharge to the aquifer due to drought disrupts groundwater flow to streams, delaying or diminishing the flow of surface water in many basins.”

November 2009 – After 25 years and generation of almost 2 million megawatt-hours of electricity, the Kingsley Hydroplant finally required significant repairs and maintenance. Central crews began complete disassembly of the turbine-generator unit prior to repair of bushings in the turbine hub, cavitation repair on the turbine blades, refurbishment of wicket gates and oil seal improvements. The $4 million project was completed by March 2010.

OCTOBER

Oct. 10, 1955 – Central’s board of directors and management announced plans to build a 100-megwatt power plant to be fueled by natural gas. The plant, which went on-line in 1958, was constructed adjacent to the Supply Canal southeast of Lexington, was named the Canaday Steam Plant after Ralph O. Canaday, who served as the District’s legal counsel during the formative years of efforts to bring an irrigation project to south-central Nebraska and later served as Central’s chief legal counsel and general manager.

Oct. 17, 1956 – During a drought in the mid-1950s, Lake McConaughy dropped to its lowest elevation on record since the reservoir’s initial fill. The lake’s elevation on this date was 3,198.2, with a volume of 348,900 acre-feet. At the time, the reservoir’s maximum capacity exceeded 1.9 million acre-feet, so the amount of water behind Kingsley Dam represented only 18.4 percent of capacity. The low-water mark would stand until September 2004 when the lake fell to an elevation of 3,197.6 feet during another extended drought. At that time, Lake McConaughy contained 341,400 acre-feet, or 19.6 percent of its current maximum capacity of 1,743,000 acre-feet. The reservoir’s maximum capacity was lowered in the early 1970s after a 1972 windstorm damaged the protective face of the dam.

Oct. 19, 1964 – A project began to replace an original – and somewhat iconic – structure along Central’s Supply Canal. The “High Bridge,” located on a county road over the canal south of Cozad was 219 feet long and stood 74 feet above the canal’s water surface was originally constructed in 1938 and was the highest bridge in the District. Age and wear-and-tear took its toll on the wooden bridge and it was replaced by a new bridge that stands 33 feet above the canal.

bridge-construction

The original “high bridge” under construction over the Supply Canal south of Cozad.

high_bridge_replacement

The replacement bridge under construction in 1964.

Oct. 26, 1990 – More than 800 people attended a “scoping hearing” at the Ogallala City Auditorium conducted by the Federal Energy Regulatory Commission in connection with the relicensing of Central’s (and the Nebraska Public Power District’s) hydroelectric project. More than 35 people testified during the five-hour meeting, almost all in favor of issuance of a new license with conditions that would not hinder provision of the many benefits from the project.

Oct. 27, 1997 – Central construction crews began an earthwork project to raise the head above a siphon on the E-65 Canal and to install more than 2,000 feet of synthetic membrane. The earthwork would provide six more feet of elevation above the siphon to increase the volume of water passing through the mile-long pipe. The membrane lining significantly reduces conveyance losses and prevents bank erosion along the E-65 Canal between the head gate near the Johnson Lake inlet and the siphon.

October 2001 – Central started a major rehabilitation project on its three Supply Canal hydropower plants. The project involved replacing the original turbines, rewinding all five generators and installing a new transformer in the J-2 hydroplant switchyard.

 

Construction Underway on Pedestrian Bridge over Hike/Bike Trail

Construction Underway on Pedestrian Bridge over Hike/Bike Trail

A Central crew began construction of the pedestrian bridge over the Johnson Lake outlet canal in early October. The last pilings were driven on Oct. 12, setting the stage for construction of the supporting infrastructure and deck.

When completed, the bridge adjacent to the existing road bridge will afford safe crossing of the outlet by users of the lake’s hike/bike trail. The 10-feet-wide bridge will be constructed of wood and rest on steel pilings.

Central used a 30-ton crane equipped with a pile-driver that was positioned on the existing road bridge. Using the existing bridge as a “base” for construction will save on the cost of the bridge. The bridge is scheduled to be completed before Thanksgiving.

Central personnel finish driving the last steel piling for the pedestrian bridge.

Central personnel finish driving the last steel piling for the pedestrian bridge.

The Supply Canal: Scenic Canoe Trips Await

The Supply Canal: Scenic Canoe Trips Await

Can you identify the locations of these photos?

Supply_Canal_Photo_1(a)Supply_Canal_Photo_3a

SUPPLY_CANAL_PHOTO_5a

No, they weren’t taken along a wild and scenic river, or at some national park. These photos were taken along Central’s Supply Canal, which runs from just east of North Platte to east of Lexington. Many sections of the canal wind through high banks, and narrow canyons.

The public is permitted to use the entire length of the canal for recreational purposes, excluding areas around Central’s three hydroelectric plants and NPPD’s Canaday Steam Plant. Portages around check structures are relatively easy, but getting around the hydroplants requires a lengthier overland trek. Launching a canoe or kayak may be difficult in some spots because of the shoreline protection materials (in most cases, broken concrete riprap). Many sections of the canal are paralleled by maintenance roads or state and county roads. The flow in the canal is relatively constant year-round, the water is 15 to 20 feet deep in most places, and the current is not rapid (no whitewater stretches), although caution should be exercised when approaching check gates.

The 75-mile-long Supply Canal and its many canyon lakes are used for hunting, hiking, canoeing and kayaking, camping and fishing. Only wakeless boating is allowed on the canal to prevent bank erosion.

Also, when planning a canoe or kayak trip, it’s a good idea to remember these helpful hints from the Nebraska Game and Parks Commission:

  • Wear your life jacket.
  • Take a spare paddle.
  • Don’t canoe alone.
  • Have tether ropes on both ends of the canoe.
  • Take insect repellant.
  • Take ample water.
  • Take sunscreen, sunglasses, and wide-brim hat. The sun’s reflection off the water can be intense. If it is hot, start early or later in the day and make the trip shorter.
  • Put extra clothing, gear, and food in water-proof bags.
  • Take rain gear, but not ponchos.
  • Take first aid kit. Learn what poison ivy and poison oak look like, as well as black widow and brown recluse spiders.
  • Avoid contact with livestock and wild animals.
  • Protect your feet with tightfitting wading shoes.
  • Camp only in designated areas. Obtain permission prior to camping on, or entering the water from, private land.
  • Read maps and plan ahead. Be off the water before dark.
  • TRASH: If you create it, e.g., cans, bottles, food wrappers, etc., pack it out. Don’t discard it in the water.
  • Build fires only in fire rings; drown flames and coals after use. If no fire ring exists, use only camp stoves.
  • Use caution when loading and unloading near highway or county bridges.
  • And remember, Nebraska’s weather can be unpredictable and prone to extremes of temperature, humidity, wind and rate of change. Summer storms rapidly form, are fast-moving and can have rain, hail, high winds, lightning, and tornados combined.  Pay attention to signs of bad weather, get off the water and take cover as quickly as possible if a storm is approaching.

Central Hosts Water for Food Institute Researchers

Central Hosts Water for Food Institute Researchers

A group from the Robert B. Daugherty Water for Food Institute (DWFI) visited sites within Central’s irrigation service area on Aug. 18 as part of a workshop aimed at “Understanding the Water-Energy-Food Nexus for Irrigated Agriculture.”

After a catered lunch at Central’s headquarters in Holdrege, the group stopped at a subsurface drip irrigation site near Loomis. The SDI system was installed several years ago as a demonstration project to investigate the use of water delivered from Central’s canal system through buried drip tape on an 8-acre pivot corner. Over the years, crop yields from the acres irrigated by the SDI system have regularly matched or exceeded yields obtained from acres irrigated under the adjacent pivot, while the volume of water has been significantly less than applied by the pivot.

The next stop was at a soybean field where the producer installed a drop-span pivot to enable irrigation of approximately 23 acres that could not be covered by a normal pivot because of obstructions. The system can use either surface water from Central’s canal, or groundwater from a well, although the well has been used sparingly recently. The pivot uses GPS control to automatically stop at the desired point to allow the producer to either disconnect or connect (depending upon which way the pivot is traveling) the drop spans to continue its path through the field.

Central Valley Irrigation representatives from Holdrege, including owner Monte Vonasek and employees Project Manager Jeremiah Johnson and Coordinator Design Manager David Hoferer, were on hand to fully explain the design challenges that had to be overcome to make the system perform the way the producer envisioned. The process of manually connecting or disconnecting the spans can be accomplished in about 15 minutes. By all accounts, the pivot has exceeded expectations and solved what was formerly a perplexing irrigation problem.

The group also visited another pivot-irrigated field – also with the capability of using either canal water or well water – near Johnson Lake. Central Valley Irrigation also provided the equipment and ingenuity to irrigate acres that previously were beyond the reach of a normal pivot. The answer in this instance was a double swing-arm pivot that bends in and out to cover hard-to-reach areas of the field.

Next, the group stopped at one of the sites along the E67 Canal system that has been equipped with telemetry equipment. Equipment was installed this spring to enable collection of data that will facilitate precision irrigation management to conserve water.

UHF radios, digitized flowmeters, rain gauges and solar panels have been installed at 26 sites (approximately 42 more turnouts will be equipped over the next two years). Real-time or near real-time data from those sites, along with data compiled at two automated weather stations in the E67 area, will be available to producers online to use with field evapotranspiration (ET) and water balances data to optimize water management and irrigation efficiency. Field data and graphs can be accessed on any device with an internet connection.

Partners in the E67 telemetry project include Central, McCrometer, the Nebraska Environmental Trust Fund, and University of Nebraska Cooperative Extension.

The group concluded the tour by visiting Central’s nearby Johnson No. 1 Hydroplant just below Johnson Lake. For many tour participants, it was the first opportunity to visit a hydroelectric facility, which was generating at nearly full capacity during the visit.

Participants from DWFI included: Nicholas Brozovic, director of policy; Isidro Campos Rodriguez, post-doctoral research associate; Timothy Foster, post-doctoral research associate; Rachel Herpel, research and outreach coordinator; Jasmine Mausbach, DWFI intern; Christopher Neale, director of research; Paul Noel, program associate; Patricia Song, DWFI intern; and Richael Young, program associate.

Other workshop attendees who were on the tour included: Rosemary Carroll, assistant research professor in hydrologic sciences at the Desert Research Institute in Reno, Nev.; Yusuke Kuwayama, Resources for the Future fellow, Washington, DC; Taro Mieno, assistant professor at the University of Nebraska-Lincoln; Mani Rouhi Rad, Ph.D. student at the University of Illinois at Urbana-Champaign; and Cameron Speir, an economist with the National Oceanic and Atmospheric Administration’s Southwest Fisheries Science Center in Santa Cruz, Calif.

Central extends special thanks to the gentlemen from Central Valley Irrigation for sharing their time and expertise; to Rachel Herpel for bringing the group to south-central Nebraska; to McCrometer’s Paul Tipling for helping to explain the telemetry project; and to producers Scott Ford, John Ford, and Willie Knoerzer (a member of Central’s board of directors) for taking the time to explain their innovative pivot operations to the group.

The DWFI group at J-1 Hydroplant.

The DWFI group at J-1 Hydroplant.


1 2