UNK Research Students Complete 15th Annual Project Tour

UNK Research Students Complete 15th Annual Project Tour

Students from the University of Nebraska-Kearney had the opportunity to expand their knowledge of Nebraska’s natural resources during a tour of The Central Nebraska Public Power and Irrigation District’s hydropower-irrigation project on May 29 and June 1.

 
It was the 15th annual UNK tour, a milestone that demonstrates a commitment by several individuals who have been of UNK’s Summer Student Research Program (SSRP) over the years, perhaps none moreso than John Falconer, director of the Office of Sponsored Programs. Falconer has organized UNK’s participation in the tour of Central’s project each year since the tour’s inception, including making the trek to Lincoln to transport canoes for a trip down Central’s Supply Canal (more about that later).

 
The SSRP supports independent student research and scholarly activity each summer. It is open to students from all disciplines, and is structured to enrich the educational experience in several ways.

 
First, SSRP enables students to engage in original research and creative activity under the guidance of a faculty mentor. This opportunity to work closely with an expert gives the student a chance to expand their knowledge of a chosen academic discipline. Also, because the research is independent of a structured classroom setting, students experience the excitement and challenges of applying their knowledge and skills to solve problems. Finally, students draw on their general studies coursework and learn about research in other disciplines, broadening their understanding of the differences and connections between various fields of study.

Students and faculty mentors pose for a photograph atop the headgates of the Supply Canal near North Platte.

The tour of Central’s project provided students – most of whom had no background in agriculture or natural resources – a first-hand look at how water resources provide multiple benefits to Nebraska. The tour stopped at several sites and facilities within the District to see examples of these benefits.

 
The students first visited a site where irrigation water is applied to fields through a sub-surface drip system. The water is diverted from a small irrigation lateral through a filter system and then through buried drip lines to the crop’s root system. SDI irrigation is extremely efficient in that it reduces evaporation and deep percolation losses that may be present with other irrigation methods. Nitrogen fertilizer can also be applied through the system, literally spoon-feeding nutrients to the growing crop during the irrigation process. Producers employing SDI systems regularly see equal or better yields from SDI acres as compared to pivot-irrigated fields with generally less application of water.

Four to a wrench: Young ladies from the UNK Summer Student Research Program hoist one of the wrenches on hand for maintenance at the Kingsley Hydroplant. And it’s not even the biggest wrench!

The group also examined (briefly, because of a passing rain shower!) an example of “outside-the-box” thinking during a stop at a “drop-span” pivot system. The pivot, which can use either water from Central’s canal system, or from an irrigation well, is located on a half-section that includes obstacles that prevent the pivot from reaching a portion of the field. The solution, implemented by the producer and a local pivot dealer, was to install a pivot that allowed the producer to disconnect spans and towers to allow the pivot to reach more than 30 acres that were previously unable to be covered by the pivot. The pivot then reverses, stops at the location where the spans were dropped off, picks up the disconnected spans (with minimal labor by the producer), and continues over the rest of the field.

 
The group also stopped at a site that is part of the E67 Telemetry Project. The E67 Canal system includes three miles of membrane-lined canal; the rest of the delivery system was converted from open laterals to buried pipelines several years ago. Each turnout in the E67 area (approximately 6,000 acres) is equipped with UHF radio transmitters, digital flowmeters and rain gauges powered by and solar panels. Two automated weather stations measure wind speed and direction, temperature, relative humidity, net solar radiation, and precipitation to calculate evapotranspiration rates of the crops.

 
The data is transmitted to a base station at the nearby Johnson No. 1 Hydroplant and then via the internet to a McCrometer server where sorting and calculations are done. Field data and graphs can be picked up online by a producer’s PC, tablet or smartphone that has internet access.

 
The data allows precision irrigation management of these fields which saves water. Producers can start each morning with an up-to date view of graphs that show their field water balances. The information allows the producer to know where and when they need to start irrigating. Additionally, in a rain event, they will know total rainfall for the day, accumulated every 15 minutes on each field (or a nearby one) and know which irrigation systems can be shut down immediately or if they should keep running through a small rain event. There should never be water stress on a field again.

 
Additional components are available and producers have the option to add such equipment as pressure gauges, soil moisture probes, pivot lateral position, etc. The E67 Telemetry Project came about as a cooperative venture by Central, McCrometer, UNL Extension and the Nebraska Environmental Trust Fund.

 
From there, the group journeyed to the Jeffrey Island wildlife habitat area, a 4,000-acre area owned and managed by Central for the benefit of wildlife. Dave Zorn, Central’s senior biologist, explained the management process and how Central has worked over the years to convert pastureland beset by musk thistle and other noxious weeds into suitable habitat for various species of birds, reptiles, amphibians and mammals.

 
The next stop was at the Gothenburg Control Center, where Gothenburg Division Manager Devin Brundage explained how the vast system is remotely and automatically operated from the Control Center, moving water almost 200 miles through a series of canals, lakes, pump stations, pipelines and hydroplants from Lake McConaughy to east of Minden.

 
The students then stopped at the Jeffrey Hydroplant near Brady to learn about the clean, renewable generation of electricity at one of the four hydroplants on Central’s system.

 
After a delicious catered dinner at Jeffrey Lodge, the students spent the night at the lodge to rest up for a second full day of exploration, education, and physical exertion.

 
Early the next morning, the group departed for Lake McConaughy where Kingsley Dam Foreman Nate Nielsen guided them through the Nebraska Game and Parks Commission’s Water Interpretive Center, the outlet structures for Lake McConaughy and the Kingsley Hydroplant.

Nate Nielsen (top right, gray shirt), Central’s Kingsley Dam foreman, explains the workings of the Kingsley Hydroplant to UNK students and members of a second tour group from Dawson County.

After lunch, the group set out for their final stop, a point just below Midway Lake, to conclude the tour with a 5.5-mile canoe trip down the Supply Canal to the Gallagher Canyon Lake State Recreation Area. For many, it was their first opportunity to paddle a canoe and, despite some inexperience and subsequent sore muscles, the trip was completed in less than two hours.

We made it! Two UNK students reach the boat ramp at Gallagher Canyon State Recreation Area after a 5.5-mile canoe trip down the Supply Canal.

To recap, the students saw examples of efficient crop irrigation, wildlife habitat, renewable energy generation, recreation and groundwater recharge.

 
Student participants on the tour were Molly Dibben, Stephanie Paulsen, Audrey Codina, Luke Hamilton, Sidney Trenhaile, Nathan Ott, Gamaliel Alcaraz, Sarah Strawn and Kendall Schumacher. Faculty mentors included Dr. Peter Longo, political science professor and interim dean of the College of Natural and Social Sciences; Dr. Mark Ellis, professor and chairman of UNK’s history department; and Dr. David Vaile, assistant professor of history.

NCTA Students Tour Part of Central’s Project

NCTA Students Tour Part of Central’s Project

Another group of students from the Nebraska College of Technical Agriculture in Curtis recently visited Kingsley Dam and Lake McConaughy.

Brad Ramsdale, PhD, professor of agronomy at NCTA, accompanied the students as he has several times in the past.

The group first listened to a presentation by Nate Nielsen, Central’s Kingsley Dam foreman, about Central’s hydro-irrigation project before the group visited the Nebraska Game and Parks Commission’s Water Interpretive Center where they learned about the various uses and importance of water.

After viewing a video that detailed the construction of Kingsley Dam and a five-minute audio presentation about water resources in the Platte River Basin, the group headed out to get a first-hand look at the “Morning Glory” spillway and the Control Tower, the outlet structures for Kingsley Dam. The group also toured the Kingsley Hydroplant where Nielsen described in detail the operation of the state’s largest hydroelectric plant.

Kingsley Dam Foreman Nate Nielsen explains the operation of the Kingsley Hydroplant to NCTA students.

After leaving Lake McConaughy, the students stopped at Paxton to observe the “Big Cut” through the hills north of the town and NPPD’s siphon that conveys water from the North Platte River into the South Platte basin.  The group then enjoyed lunch at Ole’s Big Game Bar and Restaurant.

The day concluded with a stop at Central’s Gothenburg Control Center where Gothenburg Division Manager Devin Brundage briefed the group on the operation of Central’s supervisory control and data acquisition system (SCADA) that controls and monitors flows in the Supply Canal and irrigation canals, generation at four hydroplants, and many other aspects of Central’s hydro-irrigation project.

Central thanks the group for visiting and looks forward to future visits by Dr. Ramsdale’s students.

Planning Under Way for Water & Natural Resources Tour

Planning Under Way for Water & Natural Resources Tour

The date is still months away, but not too early to begin thinking about the annual Water and Natural Resources Tour organized by the Nebraska Water Center and The Central Nebraska Public Power and Irrigation District.

This year’s tour will take place on June 27-29. The destination will be Nebraska’s west-central Platte River Basin between Elm Creek and Lake McConaughy.

“This is a critical stretch of the Platte River that has many-faceted and far-reaching impacts on all Nebraskans,” said Steve Ress communicator for the Nebraska Water Center, which is part of the Robert B. Daugherty Water for Food Global Institute. “It is tremendously important for agriculture, Nebraska’s economy, recreation, hydropower production, fish and wildlife habitat and many other interests.”

The Water and Natural Resources Tour began more than 40 years ago as an idea of then UNL Chancellor D.B. “Woody” Varner. What was originally an irrigation tour has evolved over the years into a broad investigation of many water and environmental topics relevant to Nebraska.

Tentative stops and topics on the tour include an organic farming operation; facilities related to Central’s hydro-irrigation project, including Kingsley Dam and Lake McConaughy; the Nebraska Game and Parks Commission’s Water Interpretive Center at Lake McConaughy; projects underway by Platte Basin Natural Resources Districts; the Frito-Lay corn Handling Facility at Gothenburg and Monsanto’s Water Utilization Learning Center at Gothenburg; UNL’s West Central Research and Extension Center near North Platte for discussion of new cropping and irrigation technology research, a stop at a Platte River Recovery Implementation Program site; the Nebraska Public Power District’s Gerald Gentleman Station near Sutherland, and more. Planning is underway to end the tour with a kayak trip on a stretch of Central’s Supply Canal.

“Anyone who is interested in water resources, be they producers, researchers, or work in the water resources field, is welcome to attend,” said Central’s Public Relations Coordinator Jeff Buettner. “Our agenda will be packed with interesting topics and our goal is to present a broad overview of why this stretch of the Platte River is so important to Nebraska for many different reasons.”

Registration information for the tour will be announced soon. The latest tour information will be online at watercenter.unl.edu. Participation will be limited to the first 55 registrations.

Nebraska College of Technical Agriculture Students Visit Lake McConaughy

Nebraska College of Technical Agriculture Students Visit Lake McConaughy

Students from the Nebraska College of Technical Agriculture in Curtis visited Kingsley Dam and Lake McConaughy on Nov. 15 for what is becoming something of a tradition.

The tour was facilitated by Dayna Wasserburger, Southwest Regional membership director for the Nebraska Farm Bureau. Brad Ramsdale, PhD, professor of agronomy at NCTA, accompanied the students as he has several times in the past.

The group first listened to a presentation by Nate Nielsen, Central’s Kingsley Dam foreman, about Central’s hydro-irrigation project before the group visited the Nebraska Game and Parks Commission’s Water Interpretive Center. In the center, the students participated in a number of interactive activities that demonstrated the various uses and importance of water.

curtistechfarmbureautour

Students from the Nebraska College of Technical Agriculture (NCTA) in Curtis wave to the camera during a tour of the Kingsley Hydroplant.

nateandcurtistechkids

Kingsley Dam Foreman Nate Nielsen explains the operation and function of the Outlet Tower at Kingsley Dam to NCTA students.

After a five-minute audio presentation about water resources in the Platte River Basin, the group headed out to get a first-hand look at the “Morning Glory” spillway and the Control Tower, the outlet structures for Kingsley Dam. The tour concluded with a visit inside the Kingsley Hydroplant where Nielsen described in detail the operation of the state’s largest hydroelectric plant.

Earlier in the day, Ramsdale had taken the students to Central’s diversion dam near North Platte and driven past NPPD’s Lake Maloney and the North Platte Hydroplant.

For several of the students, it was their first visit to Lake McConaughy, and despite the calendar, the weather for a mid-November day couldn’t have been more pleasant.  Temperatures climbed into the 70s and only a gentle breeze barely causing ripples on the surface of the reservoir.

Central thanks the group for visiting and looks forward to future visits by Dr. Ramsdale’s students.

-30-

NSIA/NWRA 2016 Annual Convention Summary; Sen. Carlson Named Recipient of Kremer Award

NSIA/NWRA 2016 Annual Convention Summary; Sen. Carlson Named Recipient of Kremer Award

“Forward … Building on the Past,” was the theme of the Nebraska State Irrigation Association and the Nebraska Water Resources Association annual joint convention held Nov. 21-22 in Kearney, Neb. The convention featured two days of presentations and discussions based on that theme.

The event’s first presentation covered the historic 1935 flood along the Republican River that caused untold damage and claimed more than 100 lives. The catastrophe led to the construction of a series of dams and reservoirs in the Republican River Basin to control the river flow to prevent future floods, for agriculture irrigation, and recreational uses.

Also on the agenda was a panel discussion with several recently retired individuals who shared their perspectives on long careers in the water resources field, experience gained, lessons learned, and advice for the future. On the panel were Glenn Johnson, former Lower Platte South NRD manager; John Turnbull, retired manager of the Upper Big Blue NRD; Gary Westphal, former manager of the Butler Public Power District; and Jim Goeke, formerly with the UNL Conservation and Survey Division.

Looking to the present and future, several presentations covered topics related to water management, integrated management planning, managing drought risk, the Platte River Cooperative Agreement, and expanded efforts by the Nebraska Water Balance Alliance.

CNPPID General Manager Don Kraus gave a presentation entitled, “Celebrating the 75th Anniversary of Nebraska’s Largest Water Management Project.” Kraus’ presentation covered the events leading up to the formation of The Central Nebraska Public Power and Irrigation District, the construction of Kingsley Dam and the rest of Central’s hydro-irrigation project, and Central’s efforts to modernize its facilities, improve operational efficiency and conserve water resources over the decades.

After dinner on the evening of Nov. 21, Kraus presented the Groundwater Foundation’s Maurice Kremer Groundwater Achievement Award to former State Senator Tom Carlson.

Former State Senator Tom Carlson (second from right) received the Kremer Award at the NSIA/NWRA Annual Convention.  Shown with Sen. Carlson (left to right) are Jim Goeke, selection committee member; Groundwater Foundation Executive Director Jane Griffin; and Don Kraus, selection committee member.

Former State Senator Tom Carlson (second from right) received the Kremer Award at the NSIA/NWRA Annual Convention. Shown with Sen. Carlson (left to right) are Jim Goeke, selection committee member; Groundwater Foundation Executive Director Jane Griffin; and Don Kraus, selection committee member.

The Kremer Award is presented annually by Foundation to an outstanding Nebraskan who has made a substantive contribution to the conservation and protection of Nebraska’s groundwater. The Groundwater Foundation is a nonprofit organization based in Lincoln with a mission to educate people and inspire action to ensure sustainable, clean groundwater for future generations.

“Senator Carlson’s work ethic and deep passion for our state’s most important natural resource, groundwater, is reflected in his accomplishments during his tenure as a State Senator,” said Groundwater Foundation President Jane Griffin. “Our state has benefited from Senator Carlson’s deep passion for our natural resources. On behalf of all of us at the Groundwater Foundation, I am honored to recognize him with the Kremer Award.”

Kraus, a member of the selection committee for the award, commented, “During his two terms in the Unicameral, Senator Carlson was a leading proponent and tireless advocate for legislation to improve the sustainability of Nebraska’s water resources.”

Senator Carlson actively sponsored and championed LB 1098, which established the Water Sustainability Fund in 2014 to guarantee a future for Nebraska’s stressed water resources. Through his efforts, almost $30 million dollars were accumulated to finance water sustainability research in Nebraska in 2015/2016 and will finance water sustainability research into the future. He also worked on legislation related to the Republican River Sustainability Task Force and the extension of funding for the Riparian Vegetation Management Task Force.

Carlson was elected to the Nebraska Legislature in 2006 from District 38. As a State Senator, he chaired the Agriculture Committee from 2009 through 2012 and the Natural Resources Committee in 2013 and 2014, and worked extensively on agriculture and water issues.

The award is named for State Senator Maurice Kremer, who spent 20 years in the Nebraska Legislature where he was best known for his contributions toward protecting the state’s water resources, earning him the nickname “Mr. Water.”

-30-

Kingsley Hydro Inspection: Images from the Inside

Kingsley Hydro Inspection: Images from the Inside

The accompanying images reveal parts of the Kingsley Hydroplant that are seldom seen by anyone other than Central employees who perform regular inspections, maintenance and repairs at Nebraska’s largest hydropower plant.

Central’s engineers and maintenance crews take the plant off-line annually for regular inspection and maintenance of the facility’s mechanical and electrical components, but every five years the 19-feet-diameter penstock leading from the Control Tower in Lake McConaughy and the scroll case which routes the water through the turbine are de-watered for complete inspections.

Once the gates on the Outlet Tower and the huge guard valve within the hydroplant are closed, preventing water from Lake McConaughy from entering the plant, pumps removed water from the penstock so a two-man crew can paddle a small rubber boat up the penstock to the base of the Outlet Tower to perform the inspection. (In addition, Central personnel take a larger aluminum boat – with a motor — up the 28-feet-diameter penstock from the “Morning Glory” spillway to inspect the inside of that pipe.)

Being inside the huge scroll case, which is a spiral-shaped intake tube that routes water entering from the penstock through the wicket gates just above the turbine blades, is not a place for someone with claustrophobia. First, it’s pitch dark until portable lights are turned on to enable the inspection process. Second, one arrives (either immediately or eventually) at the realization that you are well below the bottom of Lake McConaughy and only several inches of steel separate you from almost 2 million acre-feet of water on the other side.

But for the men doing the inspections, it’s all in a day’s work.

 

The wicket gates that control the flow of water falling over the turbine blades. The gates move along a vertical axis.

The wicket gates that control the flow of water falling over the turbine blades. The gates move along a vertical axis.

View from below the turbine hub, with blades and closed wicket gates visible.

View from below the turbine hub, with blades and closed wicket gates visible.

Close-up view of one of the stainless steel turbine blades.

Close-up view of one of the stainless steel turbine blades.

The turbine hub with scaffolding erected to facilitate inspection and maintenance work.

The turbine hub with scaffolding erected to facilitate inspection and maintenance work.

The guard valve between the penstock and scroll case.  The valve is 19 feet in diameter.

The guard valve between the penstock and scroll case. Although it doesn’t appear very large in the photo, the valve is 19 feet in diameter.

 

 

Joel Hull: Forgotten Pioneer

Joel Hull: Forgotten Pioneer

Forgotten Pioneer

This year The Central Nebraska Public Power and Irrigation District is marking the 75th anniversary of the completion of Kingsley Dam in 1941. The stories about George P. Kingsley and C.W. McConaughy, two of the most prominent men in the creation of the hydro-irrigation project, have been well documented. However, the story of another pioneer who sought to bring hydropower and irrigation to south-central Nebraska, has been largely forgotten.

Joel Hull was educated in Ohio as a lawyer, served as an officer in General Crook’s brigade during the Civil War and then entered the tannery business after the war. However, he soon became intrigued by the promises of cheap land, plentiful resources and the opportunity to make a fortune in the new land being settled “out west.” Some may have called him a speculator or a “Boomer,” but it could certainly be said that he was ambitious.

He sold his tannery and moved to Nebraska in 1872. He settled first in Lowell in Kearney County, which then consisted of about six buildings and a handful of surrounding farms. He staked out a claim and started farming the virgin prairie, but he was never content as a farmer. He had bigger dreams.

One of his first efforts – along with others who shared his way of thinking — was to move the county seat from Lowell, through which the railroad ran, to a little town in the center of the county that consisted of little more of than a post office operated by an old German immigrant. The immigrant had named the place Minden after his old home town in Germany.

The people of the county approved the move of the county seat in 1876, although a court injunction delayed the official designation of Minden as the county seat until 1878. By then, a courthouse had been built, lots laid out, and a school and hotel were under construction. By 1880 there were 200 people living in Minden and 300 by 1882. The boom came in 1883 when the Burlington and Missouri Railroad laid tracks through the town and by the end of 1883, 1,200 people called Minden home.

Still Hull was not content. He and others who were encouraged by the rapid growth of their town had much bigger ambitions. In 1887 he proposed a canal to produce hydropower to turn the wheels of commerce and power Minden’s future. In 1889 he formed the Nebraska Canal and Improvement Company which had a charter befitting his ambitions. The company was to be involved in real estate, town-building, flour mills, steel mills, foundries, machine shops, grain businesses, rolling mills, city water works, wagons and carriages, and of course power plants to run the factories and businesses. Irrigation canals would serve the surrounding farms. The company would oversee the growth of a “Minneapolis on the Plains.”

Hull contracted with surveyors to plot the course of his power canal. They produced plans for a 54-mile-long canal from near the mouth of Plum Creek on the Platte River north of Bertrand to Sand Creek near Minden. The plans for the canal would have followed a very similar route chosen in the late 1930s for Central’s Phelps Canal. All he needed was $150,000 to build the canal.

But that’s as far as he got. No record of funds being raised or dirt being turned exists. Drought in the early 1890s was already forcing people out of the area as crops and businesses failed. When the Santa Fe Railroad abandoned plans to build a railroad through Minden to the Black Hills, his dream suffered another serious blow.

But Hull wasn’t ready to give up. He revived his plans on a smaller scale in 1894. His canal would still produce hydropower, but would have more of a focus on irrigation. But the years 1895 to 1898 were wet years that made people forget the need for irrigation. Even two more years of drought in 1899 and 1900 could not convince people of the need for irrigation.

However, between 1906 and 1915, average annual precipitation in the Kearney County area declined yearly. Hull died in 1914, and by then others had become convinced that the area could not prosper without a reliable supply of water to offset nature’s whims.

In 1913, C.W. McConaughy, mayor of Holdrege and a grain merchant was driving through the fields north of Holdrege on what was known as the Elm Creek road. He spotted a wheat field that had an odd look to it. In some areas the wheat grew tall with full heads of grain; in others, the wheat was stunted and with sparse heads.

Upon locating the owner of the field1, McConaughy learned that the field had been previously planted to corn. During harvest, the corn had been put up in shocks to dry. Subsequently, snow had collected around the shocks. When the snow melted, the water soaked into the ground. It was in these areas that the wheat grew best.

An idea was born, an idea that would eventually lead to the construction of The Central Nebraska Public Power and Irrigation District’s hydro-irrigation project.

The rest, as they say, is history.

 

  1. The farmer was most likely O.T. Anderson, a supporter of the “Tri-County Project,” as it was then known, and later a member of CNPPID’s board of directors. He was identified in a March 21, 1938 article in the Holdrege Daily Citizen. In an interview with Moritz Aabel, who became a long-serving member of Central’s board, Mr. Aabel recalled mention by McConaughy of returning from a trip to Elm Creek during which he noticed the field. Such a route would have taken him past Anderson’s farm.

 

E67 Telemetry Project Begins Second Year

E67 Telemetry Project Begins Second Year

Centralized Water Use Database for Irrigation Water Management in CNPPID
by Marcia Trompke, CNPPID Conservation Director


Site 4

     Producers taking water from Central’s E67 Pipeline Canal are involved in our newest precision management pilot project; funded in part by Nebraska lottery dollars through the Nebraska Environmental Trust, McCrometer Inc., Central and Nebraska Extension.  McCrometer’s Steve Grove (Hemet, CA) and Paul Tipling (Salina, KS), came to NE last week to help Central staff install equipment at 25 new field sites.  These sites, added to the 2015 installations, bring total sites in the project to 51.  In addition, a third McCrometer weather station was set up next to an existing UNL station to compare measured weather data and the results of the evapotranspiration calculations from each unit.

20150615_141111
Each project site using water from E67 has been fitted with a UHF radio/solar panel set and a digitizer added to the existing flowmeter.  Most sites have a digital rain gauge unless pivot water will hit it.  A gateway unit at the powerhouse near Johnson Lake calls each field station every hour and each weather station every 15 minutes to gather data and transmit it to a host computer at McCrometer.  Producers have access to this information from each of their fields and the weather stations immediately from a home computer, tablet or smartphone.  Data is graphed, tabled and archived for producers and all data is exportable to an Excel spreadsheet.

flow meter 6  The outcome of precision management is expected to be high yields with minimum use of irrigation water.  It is possible that an irrigation event can be saved at the beginning or end of the season or both once the producer has reliable information on hand to make those decisions.

 

***

Other info:

  • The E67 Canal headgate is on the outlet side of Johnson Lake and the canal provides irrigation water to 5,767 acres to the south.
  • In 2001 and 2002, the E67 earthen canals were upgraded to 18.2 miles of pipeline, 2.9 miles of membrane lined canal (bank to bank) and a 0.4 mile lateral was left open. The project saved 5,000 AF of seepage and evaporation losses annually; storable water that can enhance aquatic and shoreline habitat at Lake McConaughy.
  • The E67 Telemetry Project is an upgrade on the customer side of the meter; an effort to help customers raise the efficiency of crop water use.
  • By having reliable information on the soil water balance in every field, producers are able to determine daily which field(s) need an irrigation.
  • The ability to see the amount of rainfall measured at the weather stations in 15 minute intervals, allows producers to determine if they need to irrigate through a light rain or shut a pivot down.
  • Data is available 24/7 from anywhere in the world
  • Central will allow producer purchased add-ons to be integrated into this system. Pressure sensors, soil moisture sensors and pivot locators are some of the possibilities.
  • Central will be able to see individual and aggregated deliveries throughout the season and by 2017, should be able to integrate the meter data directly into the accounting software for billing.
  • 2017 will be Year 3 of this project when all remaining turnouts will be included in the Telemetry system.
  • NET is providing 3 years of funding, $194,100 total as a cost share grant
    • 1 (2015), $61,380
    • 2 (2016), $65,460
    • 3 (2017), $67,260
    • McCrometer, Inc., Central, NE Extension share of the total project is $ 226,540
  • NET grants are funded from the NE Lottery; that return dollars to local communities to help fund improvement projects from these categories;
    • Habitat
    • Surface and Ground Water
    • Waste Management
    • Air Quality
    • Soil Management

University of Nebraska Kearney Students Visit J-2 Eagle-Viewing

University of Nebraska Kearney Students Visit J-2 Eagle-Viewing

Midway Point in the J2 Eagle Viewing Season

Post by Mark Peyton – CNPPID Senior Biologist

February 1st marks the mid-point in the eagle viewing season at Central’s J2 Power plant located south-east of Lexington.   So far this has been an excellent season with both consistent numbers of eagles and quite a few visitors.

To date over 1,000 people have signed the registration book averaging over 45/day.   They have been treated to about 25 eagles that are actively fishing, flying, and interacting with each other.   The viewing center is open through February on Saturdays and Sundays from 8:00 AM – 2:00 PM.

Shown here is Dr. Letitia Reichart’s Ornithology Class from the University of Nebraska-Kearney.

unk1 unk2

2014-15 Water Year Inflows Exceeded “Normal”

2014-15 Water Year Inflows Exceeded “Normal”

In the wild and wacky world of water, a review of data from the 2014-15 water year (which ended Sept. 30), is an interesting – if not particularly enlightening — exercise, as I’ll demonstrate below. It’s difficult to know what, if any, conclusions can be drawn.

The 2014-15 water year ended up as the 11th highest in terms of inflows to Lake McConaughy (see table below), which means it ranked above “normal.”

“Normal” inflows, depending upon how you choose to look at them, are either understood to be the “average,” (or “mean”), which is a number that is calculated by adding quantities together and then dividing the total by the number of those quantities; or the “median,” which is defined as “the value in the center of the distribution for an array of data.”

One problem with using the average to define “normal” is that the values can be skewed by very high or very low data.  Those impacts, of course, are lessened as the data set grows larger.

So perhaps we should use median annual inflows, which produces a number right in the middle of the data set, as an indicator of “normal.”

But is that really “normal?” What, indeed, is “normal?”

According to Webster’s Dictionary, the definition of normal is “conforming to the standard or the common type; usual; regular; natural.”

Hmm. Not sure that’s helpful, particularly given the unpredictability of Nebraska’s weather and water supplies in the Platte River watershed.

Perhaps the second definition in the dictionary would be more appropriate: “Serving to establish a standard.” That might be more helpful as we seek conditions that conform to expectations.

For the sake of comparison, the historical median annual inflow into Lake McConaughy through the recently ended water year is 913,234 acre-feet. But the average annual inflow over that period is 1,020,504 acre-feet, which is a difference of 107,270 acre-feet, or almost 12 percent. For perspective, that’s like getting another October’s worth of inflows during a year, and October is historically the month when inflows, on average, are the highest.

But let’s take a look at another set of numbers, just for fun, of course. We’ve mentioned that the historic median annual inflow is 913,234 acre-feet. That’s over a period of 74 years. If we look at the median inflow over shorter periods of time, we find the following: The 30-year median – back to the 1985-86 water year – is only 758,071 acre-feet; the 10-year median is even lower at 723,595 acre-feet, but the 5-year median – bolstered by a couple of good water years and offset by a couple of below normal (there’s that word again) years – is 819,673 acre-feet, although still significantly less than the historic median. Does that mean that “normal” is a moving target, that it changes with time and circumstances? How can something so transient be referred to as “normal?”  Can “normal” change?  (Well, obviously.  It’s no longer considered “normal” to wear “disco” outfits, but that’s another story.)

So again we have to ask, “What is normal?” One of my favorite answers to this question, which I find fitting given weather on the Great Plains, is that normal is somewhere in the middle of two extremes. If that’s the case, then the only years when inflows to Lake McConaughy ended up in the “normal” range were 1957-58 when inflows were 916,900 acre-feet, or perhaps 1977-78 when inflows were 909,567 acre-feet.

After all that, it appears that we’ve only had two years of “normal” inflows in the last 74 years!

So when looking at inflows to Lake McConaughy, I guess you could use the saying from the movie “Forrest Gump,” when the title character’s mother advised him: “Life is (substitute “Inflows are…”) like a box of chocolates; you never know what you’re going to get.”

Top Twenty Water Years
Water YearAcre-Feet Inflow
1 . 2010-112,627,556
2. 1983-842,603,167
3. 1982-832,358,867
4. 1972-732,218,404
5. 1970-712,052,372
6. 1973-741,693,349
7. 1985-861,658,226
8. 1998-991,477,213
9. 1996-971,460,295
10. 2009-101,453,595
11. 2014-151,321,203
12. 1946-471,244,041
13. 1951-521,243,043
14. 1944-451,218,007
15. 1941-421,215,860
16. 1971-721,214,752
17. 1986-871,210,589
18. 1979-801,177,316
19. 1950-511,170,919
20. 1947-481,159,208

 

The “Bottom Ten”
Water YearAcre-Feet Inflow
10. 1960-61624,960
9. 2007-08609,533
8. 2012-13601,230
7. 1955-56597,654
6. 2004-05548,569
5. 2001-02544,574
4. 2005-06494,155
3. 2006-07477,645
2. 2002-03455,731
1. 2003-04440,900

(Note that nearly all of the inflow years that populate the “Bottom 10” occurred recently, during the first decade of the 21st century.)


1 2 3 4 5
Facebook